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In regions of deep tropical convection, ice particles often undergo aggregation and form complex chains.
To investigate the effect of the representation of aggregates on electromagnetic scattering calculations,
we developed an algorithm to efficiently specify the geometries of aggregates and to compute some of
their geometric parameters, such as the projected area. Based on in situ observations, ice aggregates
are defined as clusters of hexagonal plates with a chainlike overall shape, which may have smooth
or roughened surfaces. An aggregate representation is developed with 10 ensemble members, each con-
sisting of between 4–12 hexagonal plates. The scattering properties of an individual aggregate ice par-
ticle are computed using either the discrete dipole approximation or an improved geometric optics
method, depending upon the size parameters. Subsequently, the aggregate properties are averaged over
all geometries. The scattering properties of the aggregate representation closely agree with those com-
puted from 1000 different aggregate geometries. As a result, the aggregate representation provides an
accurate and computationally efficient way to represent all aggregates occurring within ice clouds.
Furthermore, the aggregate representation can be used to study the influence of these complex ice par-
ticles on the satellite-based remote sensing of ice clouds. The computed cloud reflectances for aggregates
are different from those associated with randomly oriented individual hexagonal plates. When aggre-
gates are neglected, simulated cloud reflectances are generally lower at visible and shortwave-infrared
wavelengths, resulting in smaller effective particle sizes but larger optical thicknesses. © 2011 Optical
Society of America
OCIS codes: 010.0280, 010.1310, 010.1615.

1. Introduction

In recent years, significant research has been per-
formed to improve the representation of the bulk-
scattering and absorption properties of ice clouds
within the atmosphere. Ice cloud bulk-scattering
models have been developed by Baum et al. [1,2] for
remote sensing applications from visible (VIS)
through infrared (IR) wavelengths, and the ice clouds
were assumed to be composed of ice crystals with a

set of idealized particle habits, i.e., solid bullet ro-
settes, solid and hollow columns, droxtals, aggre-
gates of solid columns, and hexagonal plates. The
release of new microphysical ice cloud data from in
situ measurements [3,4] suggests that the represen-
tation of complex particles needs modification, such
as in the bullet rosette and aggregate models. The
conventional solid bullet rosettes have been modified
to have a hollow structure at the end of the columnar
part of each bullet branch [5]. In addition to homoge-
neous ice particles, ice crystals with hexagonal
habits were observed to contain internal air bub-
bles with spherical or spheroidal geometries [6].
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Furthermore, due to collisions with water droplets or
other ice cloud particles during the formation pro-
cess, nonspherical ice crystals in ice cloud models
are regarded as more realistic when their surfaces
are not assumed to be perfectly smooth. The scatter-
ing of radiation by nonspherical ice crystals with
rough surfaces has been discussed byMacke et al. [7],
Yang and Liou [8], Shcherbakov et al. [9], and Yang
et al. [10,11].

The representation of aggregated ice particles in
cloud studies is an area needing further refinement
and clarification. Aggregates are frequently found in
regions of deep tropical convection [12–23] and are
responsible for the generation and growth of precipi-
tation particles that may coexist with supercooled
water droplets at temperatures warmer than −30 °C
[12]. Ice particles grown in supersaturated air fall
through the atmosphere at various speeds. Although
the exact mechanism for aggregate formation is not
well understood [17], ice particles can form aggre-
gates from collisions resulting from the relative mo-
tion and aerodynamic interactions or in the presence
of a strong electric field. Aggregation is significantly
influenced by the presence of strong electric fields
that tend to exist in clouds with strong updrafts [24].
It has also been suggested that ice particles with-
in tropical convective clouds are more likely to
form aggregates in the presence of an electric field
[13,17,25].

The coalescence rate is related to the habits of the
individual ice particles and the ambient cloud tem-
perature. Extensive laboratory studies (e.g., Hobbs
et al. [26]) have demonstrated that hexagonal ice
crystals that form at relatively warm temperatures
(between −10 °C and −15 °C) may increase the aggre-
gation rate. Furthermore, individual ice aggregates
have often been found to be chains of plate-shaped
crystals [13,27].

Current ice cloud bulk-scattering and absorption
models used in the operational Moderate Resolution
Imaging Spectroradiometer (MODIS) cloud property
retrievals involve a percentage of roughened aggre-
gates with large maximum dimensions [1,2]. A spe-
cific aggregate geometry defined by Yang and Liou
[8], includes eight hexagonal columns. The aggregate
dimension can be scaled when each hexagonal col-
umn is enlarged or reduced while the aspect ratio
is kept invariant. The ice aggregate model was
modified into a chainlike aggregate by Baran and
Labonnote [28] and used for remote sensing applica-
tions based on Polarization and Directionality of
Earth’s Reflectances data. The original model was
transformed into the chainlike aggregates by stretch-
ing and rotating two of the original hexagonal col-
umns to make the aggregate particle less dense (i.
e., decreasing the volume-to-area ratio) and, there-
fore, to better fit the in situ observations.

Evans et al. [20] generated three types of aggre-
gates consisting of 6–40 randomly oriented hexago-
nal columns and plates. Each aggregate monomer
had a predetermined aspect ratio and particle size,

and a larger particle was constructed by interlocking
the fixed monomers. The discrete dipole approxima-
tion (DDA) method [29–32] was used to compute the
scattering properties of the aggregates for applica-
tion to the simulation of the radiances measured
by the Compact Scanning Submillimeter Imaging
Radiometer and the Cloud Radar System on NASA’s
ER-2 aircraft. The aggregate ice particles were repre-
sented in the DDA code with each dipole size set to be
the thickness of a hexagonal plate monomer. Um and
McFarquhar [22] defined geometries of aggregates
using ice particles formed from seven hexagonal
plates, and the scattering properties of the aggre-
gates were computed by the geometric ray-tracing
technique [7,21,22,33,34].

In this study, we define a new set of aggregate ice
particles made from plates and investigate the
scattering properties from VIS to IR wavelengths.
A computationally efficient method is presented in
Section 2 to generate numerical aggregate geome-
tries that are similar to those obtained from in situ
measurements. In Section 3, we develop an aggre-
gate representation from an ensemble of aggregate
geometries and compute the resulting scattering
properties. Section 4 is a discussion of the capability
of the aggregate representation to represent general
aggregates within ice clouds. The influence of the
aggregate particles on the remote sensing of ice cloud
microphysical and optical properties is discussed in
Section 5, and conclusions are provided in Section 6.

2. Numerical Models for the Aggregation of Hexagonal
Ice Crystals

The geometries of aggregate ice particles are avail-
able from in situ data collected during field cam-
paigns [12–18,20]. Based on observations and on
the formation processes, aggregates most likely con-
tain hexagonal monomers. Furthermore, the aggre-
gates tend to contain significantly more hexagonal
plates than columns, indicating the cloud tempera-
tures corresponding to the formation of the ice
particles. The hexagonal ice monomers vary in the
aspect ratio, and they can be attached together in
planar and in more complex three-dimensional
forms. Thus, one specific aggregate geometry will be
insufficient to realistically represent natural aggre-
gates. However, as demonstrated by Stith et al. [13],
aggregates of plates often exhibit chain-style shapes
instead of more compact shapes.

In the present study, the geometries of aggregates
are defined by attaching hexagonal plates together in
a chain-style structure. The monomer plates are in
random orientations in the aggregates. The aspect
ratios of the hexagonal plates, representing the rela-
tionship between the width and length of the parti-
cle, follow the in situ measurements reported by
Pruppacher and Klett [35]. For a hexagonal plate lar-
ger than 5 μm, the aspect ratio is determined by the
relationship [35]:

L ¼ 2:4883a0:474; ð1Þ
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where a and L represent the semiwidth and length of
the ice crystal, respectively. The units of a and L are
micrometers. Because aggregates consist of plates
with similar sizes, a in Eq. (1) is given by

a ¼ 20þ 20ξ1; ð2Þ

a ¼ 40þ 40ξ2; ð3Þ

for generating relatively small and large aggregates,
where ξ1 and ξ2 are independent random numbers
distributed uniformly in ½0; 1�.

Following Yang and Liou [8], we define aggregate
ice crystals in a three-dimensional Cartesian coordi-
nate system, oxyz, where the geometric coordinate
of each hexagonal plate can be determined by the
width, length, particle-center coordinates, and the
Euler angles on the basis of a z–y–z convention.
Figure 1(a) shows an example of a hexagonal particle
that is specified in the oxyz coordinate system (the
laboratory system) and in oPxPyPzP (the particle sys-
tem). The transfer from the particle (oPxPyPzP) to the
laboratory system (oxyz) through an intermediate co-
ordinate system (ox0Py

0
Pz

0
P) is given by

2
4 x0P
y0P
z0P

3
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2
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where ðx00; y00; z00Þ are the coordinates of the origin of
the oPxPyPzP system in the ox0Py

0
Pz

0
P coordinate sys-

tem and R is a rotational transformation matrix
given by

R ¼
� cos γ − sin γ 0
sin γ cos γ 0
0 0 1

�
·
� cos β 0 sin β

0 1 0
− sin β 0 cos β

�
·
� cos α − sin α 0
sin α cos α 0
0 0 1

�

¼
� cos α cos β cos γ − sin α sin γ − cos β cos γ sin α − cos α sin γ cos γ sin β
cos γ sin αþ cos α cos β sin γ cos α cos γ − cos β sin α sin γ sin β sin γ

− cos α sin β sin α sin β cos β

�
; ð6Þ

where α, β, and γ, respectively, are the Euler angles
that represent three consecutive rotations around
the z, y, and z axes. The positive values of the Euler
angles indicate clockwise rotations in their rotating
planes. To represent aggregates having random or-
ientations, the Euler angles of the coordinate rota-
tions are given by

α ¼ πð2ξ3 − 1Þ; ð7Þ

β ¼ cos−1ð2ξ4 − 1Þ; ð8Þ

γ ¼ πð2ξ5 − 1Þ; ð9Þ
where ξ3, ξ4, and ξ5 are independent random num-
bers uniformly distributed in ½0; 1�. As shown in
Fig. 1(a), the valid range of α, β, and γ is ð−π; π�.
The particle centers of the hexagonal ice particles are
determined in the oxyz coordinate system by

x0 ¼ dξ6 sin θ cosφ; ð10Þ

y0 ¼ dξ6 sin θ sinφ; ð11Þ

z0 ¼ dξ6 cos θ; ð12Þ

θ ¼ cos−1ð2ξ7 − 1Þ; ð13Þ

φ ¼ 2πξ8; ð14Þ

where d is initially set as a large value, e.g., 1000 μm;
ξ6, ξ7, and ξ8 are independent random numbers dis-
tributed uniformly in ½0; 1�; and θ and φ are the polar
and azimuthal angles in the oxyz coordinate system
[see Fig. 1(b)].

With the representations of an ice particle in the
oxyz coordinate system, the distance between multi-
ple ice particles can be computed numerically by con-
sidering the shortest distances among all the vertices
and boundaries of the ice particles. The distance may
be reduced with adjustments to the particle-center
coordinates of an ice particle [specifically adjusting
d in Eqs. (10)–(12)] while retaining all the other

elements. Two ice particles can join if they do not
overlap and the distance between them is negligible.
Appendix A provides a detailed procedure for esti-
mating the relative position between two hexagonal
particles, computing their distance, and identifying
whether or not they are overlapped. Repetition of
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the preceding process attaches more hexagonal
plates to the particle. Because of the geometry of
the particles, a new particle with determined a, L,
α, β, and γ may not necessarily touch some existing
aggregate elements. Therefore, the aggregation pro-
cess begins again by testing the possibility that the
aggregate elements can be attached to the new par-
ticle. To define chain-style aggregates, the test is per-
formed with the newly attached aggregate elements
while the parameters in Eqs. (7)–(9) are revised. For
example, let

βN ¼
�

cos−1ð2ξ9 − 1Þ for N ¼ 1
βN−1 þ cos−1½2:0 × ð0:990ξ10 − 0:5Þ� for N > 1

;

ð15Þ

whereN indicates theNth hexagonal plate in the ag-
gregation process.

Using the aforementioned procedure, we defined
the numerous aggregates shown in Figs. 2 and 3.
Figure 2 shows samples of “small” aggregates (here-
after referred to as aggregates 1–5) consisting of four
or five hexagonal plates. The dimensions of the
aggregates in Fig. 2 can be scaled to fit the size pa-
rameters involved in the single-scattering com-
putations. However, as suggested by recent in situ
measurements [3,4,20], aggregates with extremely
large particle sizes are achieved by increasing the

monomer numbers instead of only scaling the sizes
of each monomer. As shown in Fig. 3, “large” aggre-
gates are represented by five models (hereafter
referred to as aggregates 6–10), each consisting of
8–12 hexagonal plates. In general, the ice cloud effec-
tive particle size for a given particle size distribution

Fig. 2. Geometries of aggregates: (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5.

Fig. 3. Geometries of aggregates: (a) 6, (b) 7, (c) 8, (d) 9, and (e) 10.

Fig. 1. (a) Transformation from the oPxPyPzP to oxyz coordinate
system. (b) Polar and azimuthal angles in the oxyz coordinate
system.
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is defined by the maximum dimensionsDm, projected
areas A, and volumes V of the individual particles.
Counting the largest distance between all the aggre-
gate vertices determines the maximum dimensions
of the aggregates shown in Figs. 2 and 3. An algo-
rithm based on the Monte Carlo method computes
the projected areas of the aggregates, and the details
are provided in Appendix B.

Figures 4(a) and 4(b) illustrate the ice crystal pro-
jected area and volume, respectively, for aggregates
1–5 as functions of the particle maximum dimension.
Among the five habits used to represent small aggre-
gates, aggregate 2 has a significantly larger projected
area than the other habit realizations. Aggregate 5
has the smallest and largest values of projected area
and volume, respectively, which indicates a much
more compact aggregate. Aggregate 4 exhibits a less
compact particle compared to aggregates 1, 3, and 5
and has a smaller volume and a larger projected area
than the other habits. Figures 4(c) and 4(d) show the
particle projected area and volume for aggregates 6–
10. For aggregates having the same particle sizes, ag-
gregates 7 and 9 have very similar volumes, whereas
their projected areas are much smaller than those of
the other habits. However, the volume of aggregate
10 is not distinct from aggregates 7 and 9. The para-

meters associated with the aggregates in Figs. 2 and
3 can be found in Tables 1 and 2.

3. Scattering Properties of Aggregates

The scattering properties of the small and large ag-
gregates are computed by a combination of the
ADDA code [36,37] based on the DDA method
[29,30,38,39] and an IGOM [40]. The DDA is a tech-
nique to accurately simulate electromagnetic scatter-
ing by nonspherical particles over a wide frequency
range. In the DDA method, the scattering particle is
defined in terms of a number of electric dipoles.
While the electric field within the computational do-
main is obtained from the incident electromagnetic
wave and the interaction of the electric dipoles,
the scattering and absorption properties of the scat-
tering particle are derived via a near-to-far-field
transformation. Because of its computational effi-
ciency and convenience in the construction of irregu-
lar particle morphology, the DDA has been used to
investigate light scattering by both oriented and ar-
bitrary distributed particles, including ice particles
and aerosols in the atmosphere [20,41–45].

The extinction efficiencies, asymmetry factors, and
scattering phase functions [46] derived by the ADDA
have been compared with those fromMie theory [36].

Table 1. Parameters Associated with the Five Aggregates with Small Particle Sizesa

Aggregate 1: Dm ¼ 147:95 μm, A ¼ 5:32057Eþ 03 μm2, V ¼ 1:15867Eþ 05 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 24.000 11.223 0.000 0.000 0.000 0.000 0.000 0.000
2 27.000 11.868 −82:655 175.767 −78:103 −5:664 43.934 −13:203
3 22.000 10.770 −7:651 −23:688 −132:443 −13:519 21.792 −25:347
4 20.000 10.294 −101:850 155.069 −50:709 18.656 68.178 −29:741
5 38.000 13.955 −118:412 −30:374 −42:438 −3:161 71.109 −54:738

Aggregate 2: Dm ¼ 149:21 μm, A ¼ 9:71958Eþ 03 μm2, V ¼ 1:48618Eþ 05 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 35.000 13.421 0.000 0.000 0.000 0.000 0.000 0.000
2 35.000 13.421 −136:864 111.886 20.422 37.806 35.423 31.105
3 22.000 10.770 129.602 −103:763 123.851 54.186 51.254 4.438
4 26.000 11.657 −106:007 74.775 −150:946 19.071 −23:051 −32:585
5 30.000 12.476 102.088 −111:157 13.492 70.653 26.702 −12:658

Aggregate 3: Dm ¼ 162:32 μm, A ¼ 7:26631Eþ 03 μm2, V ¼ 1:77345Eþ 05 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 33.000 13.052 0.000 0.000 0.000 0.000 0.000 0.000
2 25.000 11.443 −104:323 147.168 29.018 7.916 31.004 −17:561
3 37.000 13.779 −66:295 −39:138 139.772 4.977 59.195 −37:719
4 26.000 11.657 −117:000 101.552 −154:612 −26:415 41.781 −56:674
5 38.000 13.955 −89:474 −95:683 −111:998 −12:506 99.011 17.501

Aggregate 4: Dm ¼ 174:08 μm, A ¼ 8:72443Eþ 03 μm2, V ¼ 1:66768Eþ 05 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 25.000 11.443 0.000 0.000 0.000 0.000 0.000 0.000
2 26.000 11.657 −136:348 117.880 −25:069 29.954 28.576 −14:725
3 39.000 14.128 −74:542 −63:550 12.115 43.180 44.478 −38:725
4 35.000 13.421 −178:069 113.773 164.661 14.393 57.944 −71:778
5 30.000 12.476 −46:679 165.030 −89:502 −11:329 −2:432 18.621

Aggregate 5: Dm ¼ 101:73 μm, A ¼ 2:18089Eþ 03 μm2, V ¼ 6:82456Eþ 04 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 25.000 11.443 0.000 0.000 0.000 0.000 0.000 0.000
2 27.000 11.868 −22:406 30.910 117.028 −44:627 18.399 −13:063
3 21.000 10.535 −100:936 −179:061 44.979 −2:087 20.477 −18:406
4 23.000 10.999 −135:880 177.983 71.613 −19:081 3.495 −29:831

aThe units of a, L, and ðx0; y0; z0Þ are micrometers.
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The root mean square (rms) relative errors from the
ADDA are quite small for cases when mr < 1:4,
where mr is the real part of the refractive index.

However, the ADDA requires sufficient electric di-
poles in the computational domain to resolve de-
tailed geometric features of the scattering particle

Table 2. Parameters Associated with the Five Aggregates with Large Particle Sizesa

Aggregate 6: Dm ¼ 369:63 μm, A ¼ 3:91496Eþ 04 μm2, V ¼ 1:06798Eþ 06 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 40.000 14.298 0.000 0.000 0.000 0.000 0.000 0.000
2 79.000 19.741 −46:217 88.822 11.433 −12:564 13.110 84.021
3 43.000 14.797 −179:796 −93:563 85.646 32.092 34.451 70.872
4 59.000 17.190 −7:572 77.85 −132:999 42.693 0.1521 −57:088
5 49.000 15.742 −25:814 88.721 −49:824 44.632 −4:197 −156:989
6 58.000 17.052 −133:723 −138:154 −47:923 −14:287 75.580 −5:949
7 55.000 16.628 170.641 −62:393 51.869 116.120 16.863 −106:819
8 46.000 15.277 −59:226 86.727 125.394 67.638 95.060 −50:351

Aggregate 7: Dm ¼ 473:71 μm, A ¼ 2:17697Eþ 04 μm2, V ¼ 1:89471Eþ 06 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 78.000 19.623 0.000 0.000 0.000 0.000 0.000 0.000
2 68.000 18.387 82.921 164.510 102.946 −6:719 −54:101 25.823
3 67.000 18.258 −92:660 −22:959 1.713 −60:934 −25:493 57.639
4 69.000 18.515 28.655 86.571 −174:082 5.337 114.889 47.891
5 57.000 16.912 160.118 −114:845 −79:650 −158:696 −28:416 72.697
6 59.000 17.190 −61:486 16.746 −99:622 0.291 122.872 −29:215
7 49.000 15.742 −152:577 167.203 −63:528 −29:232 41.204 −58:603
8 66.000 18.129 −40:620 −16:260 −133:618 −207:718 47.738 96.347
9 79.000 19.741 141.896 133.140 −46:151 −291:690 −26:998 58.650

Aggregate 8: Dm ¼ 439:51 μm, A ¼ 6:64570Eþ 04 μm2, V ¼ 1:92774Eþ 06 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 77.00 19.503 0.000 0.000 0.000 0.000 0.000 0.000
2 58.000 17.052 −177:368 64.830 −27:941 99.193 4.561 −7:375
3 75.000 19.261 −146:815 −117:312 −69:303 115.667 8.322 −105:096
4 42.000 14.633 99.056 53.002 77.723 90.671 21.580 −175:875
5 47.000 15.434 13.853 −135:455 33.875 −18:069 47.826 47.262
6 72.000 18.892 −167:855 43.472 −23:762 97.754 −22:864 −249:469
7 45.000 15.119 −108:623 −142:431 −15:595 7.019 −35:116 −189:123
8 65.000 17.998 −51:308 −72:400 −173:509 −14:105 −132:186 −184:875
9 74.000 19.139 −87:353 75.060 −49:382 32.361 −171:149 −155:846
10 70.000 18.641 −98:065 −111:24 25.565 50.082 −228:132 −81:978

Aggregate 9: Dm ¼ 445:23 μm, A ¼ 2:08749Eþ 04 μm2, V ¼ 1:57522Eþ 06 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 48.000 15.589 0.000 0.000 0.000 0.000 0.000 0.000
2 77.000 19.503 150.470 158.669 64.315 16.422 −9:303 36.460
3 50.000 15.893 156.544 −28:559 7.439 −0:981 12.898 79.428
4 51.000 16.043 133.796 143.141 106.479 8.530 110.051 82.220
5 45.000 15.119 15.886 −42:947 −76:896 −21:106 1.340 120.318
6 79.000 19.741 7.484 100.825 85.510 −126:526 −12:425 138.208
7 43.000 14.797 148.401 −80:442 51.002 −183:477 −38:868 140.806
8 57.000 16.912 29.050 79.070 134.321 −103:686 15.369 22.394
9 46.000 15.277 164.668 −104:400 31.959 −103:477 −37:950 −32:759
10 67.000 18.258 102.284 −39:670 −137:843 −241:91 −59:434 209.639
11 40.000 14.298 −20:386 138.140 88.125 −216:237 −146:224 219.446

Aggregate 10: Dm ¼ 471:42 μm, A ¼ 6:14953Eþ 04 μm2, V ¼ 1:86694Eþ 06 μm3

Element # a L α ð°Þ β ð°Þ γ ð°Þ x0 y0 z0
1 51.000 16.043 0.000 0.000 0.000 0.000 0.000 0.000
2 53.000 16.338 121.826 79.245 59.939 44.024 −70:931 −27:186
3 75.000 19.261 −119:265 −122:802 131.734 117.027 −44:620 44.158
4 74.000 19.139 168.954 −47:041 130.687 28.929 51.624 67.320
5 49.000 15.742 175.836 130.105 92.497 152.171 −84:018 27.426
6 73.000 19.016 44.989 177.401 −107:193 155.161 74.466 61.031
7 40.000 14.298 85.171 −13:969 154.203 175.293 −111:757 53.939
8 61.000 17.464 128.262 45.585 −151:717 85.657 138.845 10.530
9 59.000 17.190 86.249 −140:248 −143:415 30.315 139.789 −3:023
10 59.000 17.190 17.525 33.540 73.917 −67:218 161.784 −3:566
11 43.000 14.797 −94:888 −148:820 117.310 108.901 146.382 77.028
12 52.000 16.192 72.882 −18:720 22.437 −105:644 147.902 39.572

aThe units of a, L, and ðx0; y0; z0Þ are micrometers.
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and to achieve numerical accuracy. As a result,
chained-particle aggregates tend to consume a sub-
stantial amount of computing time because of the
multiple electric dipoles in a relatively large compu-
tational domain. In our study, ADDA v 0.79 [36] is
used to compute the scattering properties of aggre-
gates. The size of the electric dipoles in the ADDA
is given as follows:

d ¼

8>>>>>>><
>>>>>>>:

�
Dm
20 ;

λ
20jmj

�
for X ≤ 1

λ
20jmj for 1 < X ≤ 5

λ
10jmj for 5 < X ≤ 15

λ
5jmj for X > 15

; ð16Þ

where d is the interdipole distance, m is the refrac-
tive index of the aggregates, λ is the wavelength, and
hi indicates the minimum value of the variables. The
size parameter, X, of an aggregate is defined by

X ¼ πDs

λ ; ð17Þ

where Ds is the diameter of a volume-equivalent
sphere. Based on Yurkin and Hoekstra [37], the ac-
curacy of the results decreases with the increase of d
and is reported as several percent when d ¼ λ

10jmj.
The conventional IGOM has been extensively em-

ployed in the light scattering and radiative transfer

processes for satellite-based remote sensing of ice
clouds [1,2,47–50]. For computations involving large
size parameters, the IGOM is an efficient method for
computing the scattering properties of aggregates,
and our version has been updated in numerous ways
over the past few years. Compared to the computa-
tions reported by Yang and Liou [8], the current
IGOM has improved the treatment of the edge effect
[51–53] and enhanced the treatment of forward scat-
tering [42] to more accurately account for the diver-
gence of scattered energy in the forward peak. The
result of the new treatment of forward scattering
is that a delta-transmission term is no longer re-
quired, even for extremely large particles. As a result
of the scattering model improvements, the extinction
efficiency of an ice particle exhibits a smooth transi-
tion from small to large particles whose scattering
properties are computed from the ADDA and IGOM,
respectively. The IGOM code used in Yang and Liou
[8] has been revised to adapt to various sets of pa-
rameters associated with aggregates.

Figure 5 shows the extinction efficiency, absorption
efficiency, single-scattering albedo, and asymmetry
factor as functions of the size parameter for the ran-
domly oriented aggregate 1 at λ ¼ 2:13 μm. The ran-
dom orientations of the particles are achieved in the
ADDA by using the built-in orientation averaging
algorithm. A detailed discussion of the averaging
process can be found in the literature [36]. The ex-
tinction and absorption efficiencies calculated with

Fig. 4. (a), (b) Variation of ice crystal projected area and volume versus maximum dimension for aggregates 1–5. (c), (d) Variation of ice
crystal projected area and volume versus maximum dimension for aggregates 6–10.
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the ADDA were originally derived by dividing the
corresponding extinction and absorption cross sec-
tions of the scattered particle over the cross section
of a volume-equivalent sphere. To be more consistent
with the IGOM, we replace the cross section of the
volume-equivalent sphere by a projected area com-
puted by the process described in Appendix B. In
the IGOM computations, the above-edge effect con-
tribution to the extinction and absorption efficiencies
can be approximated following Bi et al. [42]:

Qe;edgeðλÞ ¼ 2c1

� λ
πDm

�
2=3

; ð18Þ

Qa;edgeðλÞ ¼ 2c2

� λ
πDm

�
2=3

: ð19Þ

The two constants, c1 and c2, are determined by the
wavelength (λt) where the ADDA model switches to
the IGOM:

c1 ¼ 0:5½Qe;ADDAðλtÞ −Qe;IGOMðλtÞ�
�πDm

λt

�
2=3

; ð20Þ

c2 ¼ 0:5½Qa;ADDAðλtÞ −Qa;IGOMðλtÞ�
�πDm

λt

�
2=3

; ð21Þ

where Qe;ADDAðλtÞ and Qa;ADDAðλtÞ are the extinction
and absorption efficiencies computed by the ADDA,
and Qe;IGOMðλtÞ and Qa;IGOMðλtÞ are the efficiencies
computed from the IGOM without accounting for
the above-edge effect. The results in Fig. 5 indicate
that the extinction efficiency for the aggregate initi-
ally rises rapidly with particle size, and it subse-
quently approaches a constant value of 2 with a
decaying oscillation. As the size parameter increases
from 40 to 1000, the absorption efficiency increases
dramatically due to the increase of the ray path
length within the particle, and the single-scattering
albedo decreases from 1. The asymmetry factor in
Fig. 5 generally increases with particle size when dif-
fraction becomes significant compared to the scatter-
ing of light by the particle. For wavelengths with
strong absorption within the particle, the scattering
properties increase with particle size, as shown in
Fig. 6. The results in Figs. 5 and 6 reflect smooth
transitions of the scattering properties from small
to large particles, although a small difference in the
asymmetry factors is apparent when λ ¼ 2:13 μm. Be-
cause of improvements in the IGOM, the computa-
tions by the ADDA and IGOM are very consistent
in the region where the size parameter is approxi-
mately 25. The scattering properties of the aggre-
gates in our study are computed by the ADDA
when the size parameter is smaller than 25, and they

Fig. 5. Extinction efficiency, absorption efficiency, single-scatter-
ing albedo, and asymmetry factor as functions of the size param-
eter for aggregate 1 at λ ¼ 2:13 μm. The refractive index of ice at
λ ¼ 2:13 μm is 1:2673þ i5:57 × 10−4.

Fig. 6. Same as Fig. 5, except that λ ¼ 12:0 μm. The refractive in-
dex of ice at λ ¼ 12:0 μm is 1:2799þ i4:13 × 10−1.
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are computed by the IGOM for aggregates with lar-
ger size parameters.

Figure 7 shows the scattering phase matrices for
aggregate 1 with a maximum dimension of 100 μm.
In the manner of Yang and Liou [8], the surface
roughness of the aggregates is specified by many
small tilted facets on the particle surface. The slopes
of the roughened facets are randomly sampled as-
suming a Gaussian distribution [54]. The rms tilt
σ can be used as the parameter to specify the degree
of surface roughness. As σ increases from 0 to 1, the
surface roughness varies from smooth to deeply
roughened. As shown in Fig. 7, aggregates are seen
to be associated with strong forward scattering at
VIS wavelengths due to diffraction. In addition,
the phase function for a smooth aggregate reveals
halo peaks at approximately 22° and 46°. However,
the maxima of the halos decrease as σ increases be-
cause of spreading of the rays associated with the
minimum deviation of refraction. Figure 8 shows
the independent nonzero elements of the scattering
phase matrix for aggregate 10 with a maximum di-
mension of 1000 μm. The scattering phase function
(P11) for aggregate 10 has lower values at some side
scattering angles compared to aggregate 1 for smooth
particles, but these differences decrease as σ in-
creases. It is interesting to note that an increasing
σ tends to increase the side scattering over that of
smooth particles. Additionally, the other indepen-
dent nonzero elements of the phase matrices in
Figs. 7 and 8 are sensitive to ice particle habit, size,
and surface roughness, which indicate the potential
of using polarization measurements to determine ice
cloud microphysical properties. Figure 9 compares
the scattering phase matrices for aggregates 1 and

10 at λ ¼ 12:0 μm, and it can be seen that the various
elements of the phase matrix tend to be nearly fea-
tureless (i.e., no halos) because of strong absorption.

4. Sensitivity of the Aggregate Ensemble
Representation

Various aggregate models consisting of either one or
a small number of predetermined geometric particles
have been used in previous studies [8,20,22,28]. Our

Fig. 7. Scattering phase matrices for aggregate 1 at λ ¼ 0:65 μm.
The refractive index of ice at λ ¼ 0:65 μm is 1:3080þ i1:43 × 10−8.

Fig. 8. Scattering phasematrices for aggregate 10 at λ ¼ 0:65 μm.
The refractive index of ice at λ ¼ 0:65 μm is 1:3080þ i1:43 × 10−8.

Fig. 9. Scattering phase matrices for aggregates 1 and 10 at
λ ¼ 12:0 μm. The refractive index of ice at λ ¼ 12:0 μm is
1:2799þ i4:13 × 10−1.
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aggregate representation uses 10 aggregate geome-
tries with various particle sizes to represent the ag-
gregates found in ice clouds. The averaged scattering
properties of the ice cloud aggregates can be used to
investigate the ability of our aggregate model to re-
present an ensemble of particles.

Figure 10 shows the comparison of the scattering
phase functions for the “aggregates” contained in ice
clouds with the approximations using our aggregate
representations shown in Figs. 2 and 3. To represent
thevarietyofaggregatesiniceclouds,the“aggregates”
are an average of 1000 computer-generated aggre-

gates composed of four or fivehexagonal plateshaving
aspect ratios as described byEq. (1). Similar to the ag-
gregate representation involving aggregates 6–10,
large aggregates in the “aggregates” consist of 8 to
12plates, except that 1000 geometries are considered.
The equivalent phase functions in Fig. 10 are given by

P11ðΘ;Dm; λÞ ¼
P

M
n¼1 P11ðΘ;Dm; λ;nÞCsðDm; λ;nÞP

M
n¼1 CsðDm; λ;nÞ

;

ð22Þ

Fig. 10. (a) Comparison of the scattering phase functions for the averaged values over 1000 aggregates (solid curve), the approximation
using aggregates 6–10 (dashed curve), and aggregate 9 (dotted curve). (b) Comparison of the scattering phase functions for ice crystal
surface under smooth, moderately rough, and very rough conditions. (c) Comparison of the scattering phase functions for the averaged
values over 1000 aggregates (solid curve), the approximation using aggregates 1–5 (dashed curve), and aggregate 5 (dotted curve).
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where P11ðΘ;Dm; λ;nÞ is the phase function for each
aggregate geometry, Θ is the scattering angle,
CsðDm; λ;nÞ is the scattering cross section, andM is 5
and1000forouraggregaterepresentationandthe “ag-
gregates,” respectively. Figure 10(a) illustrates the
comparison of the scattering phase functions for large
aggregates at λ ¼ 0:65 μm. The results indicate that
the phase function of a large aggregate shows a slight
sensitivity to particle geometry. Generally, for large
particles, both aggregate 9 and the “aggregates” are
consistent intheirrepresentationofscatteringproper-
ties. However, tiny oscillations are noticeable in the
phase function of a single aggregate, especially at
small scattering angles. In the “aggregates” and our
aggregate representation, these oscillations are aver-
aged to be physically more meaningful. Figure 10(b)
compares the phase functions of our aggregate repre-
sentation for various surface roughness conditions.
Thephase functionoscillation is reducedgreatlywhen
surface roughness is incorporated. The aggregates
beingconsideredinFig.10(c)arerepresentedbyaggre-
gate5, aggregates1–5, and the “aggregates.”Thescat-
tering phase functions are computed by the ADDA
becausethesizeparameter issmall. Inthecomparison
between the phase functions of the “aggregates” and
aggregate 5, slight differences are shown in the for-
wardscatteringregion.Atsideandbackscatteringan-
gles, the phase function of aggregate 5 is substantially
different from those of the other two aggregate repre-
sentations. The Student’s t-test [55] is used to investi-
gate the difference between the phase functions from
the two aggregate representations. The t-test is used
because the goal is to compare the phase functions
averaged over both 10 and 1000 aggregate geometries
and subsequently determine if 10 aggregates can be
usedtorepresentthe1000aggregates.Theuseoffewer
aggregate representations greatly decreases the
amount of computer time necessary to calculate the
scattering properties. The samples of the Student’s
t-test are the averaged phase functions as functions
of the scattering angle. Therefore, the Student’s t-test
canprovideanestimateof theoverallagreementof the
phase functions from the 1000 aggregates and the ap-
proximation using 10 aggregates.

Aggregate 5 can be used to represent the “aggre-
gates” when the null hypothesis is rejected. For scat-
tering angles of 60°–180°, the t-statistic, jtj ¼ 5:1862,
has exceeded the 95% confidence level (t0:05 ¼ 1:96),
which suggests that thedifferences in phase functions
are significant between aggregate 5 and the “aggre-

gates” containing 1000 geometries. The Student’s t-
test can be carried out on the phase functions of the
“aggregates”and our aggregate representation. To as-
sess the significance of our aggregate representation,
the t-statistics are computed as follows:

jtj ¼ 0:1405 < t0:05 ¼ 1:96; ð23Þ

jtj ¼ 0:5096 < t0:05 ¼ 1:96; ð24Þ
for the phase functions at the scattering angles of
0°–180° and 60°–180°, respectively. The null hypoth-
esis is rejected in favor of the alternative hypothesis.
Therefore, the aggregate representation in this study
can be used to represent the “aggregates” in the simu-
lation of their scattering properties.

5. Aggregation Effect in the Retrieval of Ice Cloud
Properties

To simulate the scatteringproperties of ice clouds con-
taining individual hexagonal particles and their ag-
gregates, we first assume the geometries shown in
Figs. 2 and 3. The particle sizes of the aggregates
are based on a particle size distribution, which, for
ice clouds, is generally parameterized by the gamma
distribution [56–58] given by

nðDmÞ ¼ N0D
μ
m exp

�
−
bþ μþ 0:67
Dmmedian

Dm

�
; ð25Þ

whereDm is the dimension of the aggregate,N0 is the
concentration intercept parameter, and Dmmedian is
themedian of the distribution ofDm. The parameters,
μandb, are assumed to be 2.0 and2.2, respectively [2].
Clouds containing a mixture of ice habits can be gen-
eratedby thedecompositionof anumberofaggregates
into hexagonal fractions. The geometries of the frac-
tions are dependent on the aggregate dimensions
and can be derived based on the information provided
in Tables 1 and 2. The effective diameter of the ice
clouds are derived as follows:

De ¼
3
2

ð1 − f Þ
�P

24
i¼1

RD1
Dmin

VpinðDmÞdDm þP
50
j¼1

RDmax
D1

VpjnðDmÞdDm

�
þNaf

RDmax
Dmin

VanðDmÞdDm

ð1 − f Þ
�P

24
i¼1

RD1
Dmin

ApinðDmÞdDm þP
50
j¼1

RDmax
D1

ApjnðDmÞdDm

�
þNaf

RDmax
Dmin

AanðDmÞdDm

; ð26Þ

where f is the proportion of the plates that form ag-
gregates; Vpi and Vpj are the volumes of the plates in
Tables 1 and 2, respectively; Api and Apj are the
projected areas of the plates; Va is the averaged
volume of the aggregates used to represent all aggre-
gate ice crystals; Na is the number of the aggregate
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geometries; andD1 is the threshold value of the aggre-
gate dimensions to determine small and large aggre-
gates. In this study, Na is 5 and D1 is assumed to be
550 μm. Note that the particle size distributions of
plates are different than that of the aggregates. How-
ever, the size distributions of the plates are not de-
rived because they are not used in the computation
of the effective particle sizes and scattering properties
in our cloud model.

The phase functions of ice clouds are given by

P11 ¼
ð1 − f Þ

�P
24
i¼1

RD1
Dmin

P11;piCs;pinðDmÞdDm þP
74
i¼25

RDmax
D1

P11;piCs;pinðDmÞdDm

�
þNaf

RDmax
Dmin

P11;aCs;anðDmÞdDm

ð1 − f Þ
�P

24
i¼1

RD1
Dmin

Cs;pinðDmÞdDm þP
74
i¼25

RDmax
D1

Cs;pinðDmÞdDm

�
þNaf

RDmax
Dmin

Cs;anðDmÞdDm

;

ð27Þ

where P11;pi and Cs;pi are the phase function and scat-
tering cross section for the plates and P11;a and Cs;a
are the phase function and scattering cross section
for the aggregates.

To investigate the influence of ice particle aggrega-
tion on the inference of ice cloud microphysical and
optical properties, reflectances are simulated by the
discrete ordinates radiative transfer model [59] for
two channels centered at wavelengths of 0.65 and
2:13 μm. A dark (nonreflective) surface condition is
assumed to eliminate the influence of surface bidir-
ectional reflectance features. Figure 11 compares the
calculated lookup tables. The dashed curves in
Fig. 11(a) denote hexagonal plates, while the solid
curves are used to indicate an ice cloud model that
contains the same habits with the exception that
30% of the plates form aggregates. From Fig. 11(a),
it can be found that the optical thicknesses of the ice
clouds are reduced when aggregates are included.
Based on the scattering properties of the aggregates,
the optical thickness is determined by

τ ¼ ð1 − f ÞΔz

�X24
i¼1

Z
D1

Dmin

Ce;pinðDmÞdDm

þ
X74
i¼25

Z
Dmax

D1

Ce;pinðDmÞdDm

�

þNafΔz
Z

Dmax

Dmin

Ce;anðDmÞdDm; ð28Þ

where Δz is the physical thickness of the cloud and
Ce;pi and Ce;a are the extinction cross sections for the
plates and aggregates. When f is 0, the optical thick-
ness is increased to that of 100% plates. From
Eq. (28), it is known that the scattering properties
and particle number concentration of ice crystals

can both affect the retrieval of cloud optical thick-
ness. A reduction in the particle number concentra-
tion caused by the aggregation process tends to
decrease the ice cloud optical thickness. This feature
becomes more pronounced when 90% of the plates
form aggregates, as shown in Fig. 11(b). It is also
clear from Fig. 11 that the retrieved ice cloud effec-
tive particle sizes generally decrease when the aggre-
gation effect is ignored in the retrieval process.

6. Summary

With a set of in situ measurements of aggregates as
guidance, an algorithm is developed to efficiently de-
fine the geometries of aggregates and compute their
projected areas. Aggregates result from attaching ice
particle hexagonal plates together in a chainlike
manner. We investigate the scattering properties of
randomly oriented aggregates of plates using the
ADDA and IGOM for particles whose size param-
eters are smaller and larger than 25, respectively.
The results indicate that the scattering properties
are consistent in the region where the size parameter
is approximately 25. At VIS wavelengths, the scatter-
ing phase functions of the aggregates show the same
typical halo peaks at scattering angles of 22° and 46°
as do hexagonal ice particles. The maxima of the ha-
los are greatly reduced when the ice crystal surface
roughness is taken into account.

Using the algorithm to create geometries of aggre-
gates and their scatteringproperties, an investigation
was performed to explore the possibility of represent-
ingallaggregatesbasedonthescatteringpropertiesof
a more limited number of aggregate representations.
To represent small aggregates, we generated five ag-
gregate geometries, with each particle consisting of
four or five hexagonal plates. Aggregates with large
particles were built by increasing the monomer num-
bers instead of merely scaling the sizes of each mono-
mer, and five models consisting of 8–12 plates were
considered. The scattering properties of a representa-
tive aggregate were derived by averaging values over
theindividualaggregategeometries.Todeterminethe
ability of our aggregate representation to represent a
larger number of aggregate shapes, “aggregates”were
simulated from 1000 different plate aggregates, with
properties compared to the use of 10 different plate
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aggregates. The comparison of the scattering proper-
ties suggested that the variance of the phase function
for an ensemble of 10 aggregate particles was small,
indicating that this number of particles is sufficient
to represent a larger set of particles.

Furthermore, the influence of the aggregate of
plates was investigated for the satellite-based re-
mote sensing of ice clouds. As cloud reflectances can
be used to infer ice cloud microphysical and optical
properties, we compared the lookup tables of cloud

reflectances for ice cloud models involving hexagonal
plates and their aggregates. The neglect of aggre-
gates in the retrieval process leads to an overesti-
mate of optical thickness but an underestimate of
effective particle size. This result is partly due to
the lower projected areas of the ice crystals during
the aggregation process. More detailed investiga-
tions of the plate aggregates need to be performed
in conjunction with other ice habits.

Appendix A: Estimating the Relative Position of
Hexagonal Particles

Figure12shows thegeometries of hexagonal particles
used in our study. In particle A, the faces, edges, and
vertices of the particle are indicated by FiAðiA ¼
1; 2;…; 8Þ, LjAðjA ¼ 1; 2;…; 18Þ, and PkAðkA ¼ 1; 2;
…; 12Þ, respectively.~ciAðiA ¼ 1; 2;…; 8Þ are the posi-
tionvectorsof thecentersof theparticle faces,~f iAðiA ¼
1; 2;…; 8Þ indicatethenormaldirectionsof theparticle
faces, and ~pkAðkA ¼ 1; 2;…; 12Þ and~ljAðjA ¼ 1; 2;…;
18Þ are the vectors of the vertices and edges,
respectively.

The distance between two hexagonal particles that
are not overlapped in the oxyz coordinate can be writ-
ten by

D ¼
�DðPkA;FiB; kA ¼ 1; 2;…; 12; iB ¼ 1; 2;…; 8Þ
DðPkB;FiA; kB ¼ 1; 2;…; 12; iA ¼ 1; 2;…; 8Þ
DðLjA;LjB; iA ¼ 1; 2;…; 18; jB ¼ 1; 2;…; 18Þ

�
;

ðA1Þ
where hi indicates the minimum value of the
variables.

DðPkA;FiB; kA ¼ 1; 2;…; 12; iB ¼ 1; 2;…; 8Þ are the
distances between a vertex (PkA; kA ¼ 1; 2;…; 12) of
particle A and a face (FiB; iB ¼ 1; 2;…; 8) of particle
B, and they can be determined by

DðPkA;FiB; kA ¼ 1; 2;…; 12; iB ¼ 1; 2;…; 8Þ

¼
� j~pkA −~pujðkA ¼ 1; 2;…; 12; iB ¼ 1; 2;…; 8Þ for Pu ∈ FiB

hDðPkA;LiBm1;m1 ¼ 1; 2;…4ðor 6ÞÞiðkA ¼ 1; 2;…; 12; iB ¼ 1; 2;…; 8Þ for Pu∉FiB
;

ðA2Þ

Fig. 11. Lookup tables using 0.65 (x axis) and 2:13 μm (y axis) re-
flectancesfor (a) independentplatesandthesameicecrystalsexcept
that 30%plates formaggregates and (b) independent plates and the
same ice crystals except that 90%plates formaggregates. The solar
zenith and viewing zenith angles are 30°, respectively, and the rela-
tive azimuth angle is 90°. τ represents the cloud optical thickness.

Fig. 12. Geometries of hexagonal particles.
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where LiBm1 represents the edges on face FiB and ~pu
is the position vector of Pu and can be given by

~pu ¼~pkA þ~f iB
~f iB · ð~ciB −~pkAÞ

j~f iBj2
: ðA3Þ

The distance between PkA and LiBm1 can be derived
as follows:

DðPkA;LiBm1;m1 ¼ 1; 2;…4ðor 6ÞÞ ¼
� j~pkA −~pvj for Pv ∈ LiBm1

hj~pkA −~piBm1m2jðm2 ¼ 1 and 2Þiðm1 ¼ 1; 2;…4ðor 6ÞÞ for Pv∉LiBm1
;

ðA4Þ

where PiBm1m2 represents the vertices on LiBm1 and
~pv is the position vector of Pv and can be given by

~pv ¼
ð~pkA −~piBm1m2Þ · ð~piBm11 −~piBm12Þ

j~piBm11 −~piBm12j2
ð~piBm11

−~piBm12Þ þ~piBm11ðm1 ¼ 1; 2;…4ðor 6ÞÞ: ðA5Þ

DðLjA;LjB; jA ¼ 1; 2;…; 18; jB ¼ 1; 2;…; 18Þ in
Eq. (A1) is the distance between LjAðjA ¼
1; 2;…; 18Þ and LjBðjB ¼ 1; 2;…; 18Þ from particles
A and B, respectively, and can be given as follows:

DðLjA;LjB; jA ¼ 1; 2;…; 18; jB ¼ 1; 2;…; 18Þ

¼ h
j~pjAm3 −~pjBm4jðm3;m4 ¼ 1 and 2Þ
DðPjAm3;LjB;m3 ¼ 1 and 2Þ
DðPjBm4;LjA;m4 ¼ 1 and 2Þ
DðPw;LjAÞ for Pw ∈ LjB

i; ðA6Þ

where DðPjAm3;LjB;m3 ¼ 1 and 2Þ and DðPjBm4;LjA;
m4 ¼ 1 and 2Þ can be derived fromEq. (A4). The posi-
tion vector of the Pw in Eq. (A6) is given by

~Pw ¼~p0
jA1

þ ð~p0
jA1 −~p0

jA2Þ
�ð~p0

jA1 −~pjB1Þ × ð~pjB2 −~pjB1Þ
ð~p0

jA2 −~p0
jA1Þ × ð~pjB2 −~pjB1Þ

�
z
;

ðA7Þ

where

~p0
jA1 ¼~pjA1 þ ð~ljA ×~ljBÞ

ð~ljA ×~ljBÞ · ð~pjB1 −~pjA1Þ
j~ljA ×~ljBj2

; ðA8Þ

~p0
jA2 ¼~pjA2 þ ð~ljA ×~ljBÞ

ð~ljA ×~ljBÞ · ð~pjB1 −~pjA2Þ
j~ljA ×~ljBj2

: ðA9Þ

Particles A and B are not overlapped in space if
they satisfy8>><
>>:

P
8
iB¼1 DðPkA;FiB; kA ¼ 1; 2;…; 12Þ ≠ 3

ffiffiffi
3

p
aB þ LBP

8
iA¼1 DðPkB;FiA; kB ¼ 1; 2;…; 12Þ ≠ 3

ffiffiffi
3

p
aA þ LAP

18
jA¼1 LjA⋂

P
8
iB¼1 FiB ¼ ∅

;

ðA10Þ
where aA and aB and LA and LB are the semiwidths
and lengths of the hexagonal particles, respectively.

Fig. 13. Two types of faces for a hexagonal ice crystal.
Fig. 14. Schematic illustrating the computation of the projected
area of an aggregate ice crystal.
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The derivation of DðPkA;FiB; kA ¼ 1; 2;…; 12; iB ¼
1; 2;…; 8Þ and DðPkB;FiA; kB ¼ 1; 2;…; 12; iA ¼
1; 2;…; 8Þ can be found in Eqs. (A1) and (A2).
Figure 13 shows two types FiB. If FiB has a rectan-
gular shape, the relationship between LjA and FiB
in Eq. (A10) can be derived as follows:

�
LjA⋂FiB ≠ ∅ for

P
4
m5¼1 DðLjA;LiBm5Þ ≠ aB þ LB

LjA⋂FiB ¼ ∅ for
P

4
m5¼1 DðLjA;LiBm5Þ ¼ aB þ LB

;

ðA11Þ

where DðLjA;LiBm5;m5 ¼ 1; 2;…; 4Þ is the distance
between LjA and the boundaries of FiB. The deriva-
tion of DðLjA;LiBm5;m5 ¼ 1; 2;…4Þ can be found in
Eq. (A6). If FiB has the hexagonal structure shown
in Fig. 13, LjA⋂FiB can be given by

�
LjA⋂FiB ≠ ∅ for

P
6
m6¼1 DðLjA;LiBm6Þ ≠ 3

ffiffiffi
3

p
aB

LjA⋂FiB ¼ ∅ for
P

6
m6¼1 DðLjA;LiBm5Þ ¼ 3

ffiffiffi
3

p
aB

:

ðA12Þ

Appendix B: Compute Projected Area of an Aggregate

Figure 14 shows aggregate A in the oxyz coordinate
system. The projected area of an aggregate can be
computed by an algorithm based on the Monte Carlo
method. Consider a random disk Di that is perpendi-
cular to its center position vector~pi0. The radius of Di
is equal to the maximum dimension of the aggregate
Dm, and a random point Pi on the disk can be derived
from

j~pi −~pi0j ¼ Dm

ffiffiffiffiffi
ξA

p
; ðB1Þ

~pi ·~pi0 ¼ j~pi0j2; ðB2Þ

ð~pi −~pi0Þ · ð~pB −~pi0Þ ¼ Dm

ffiffiffiffiffi
ξA

p
j~pB −~pi0j cosð2πξBÞ;

ðB3Þ
where ξA and ξB are independent random numbers
that are uniformly distributed on ½0; 1� and ~pB is
the position vector of a fixed point on the face con-
taining Di and can be given by

~pB ¼
�
0; 0;

j~pi0j2
ð~pi0Þz

�
: ðB4Þ

For a line Li that satisfies

�
Pi ∈ Li
~li ¼~pi0

; ðB5Þ

we consider a Mi given by

Mi ¼
�
1 for Li⋂

P
8N
j¼1 Fj ≠ ∅

0 for Li⋂
P

8N
j¼1 Fj ¼ ∅

; ðB6Þ

where Fj indicates a face of aggregate A in Fig. 14
and N is the number of the hexagonal particles in

A. The relationship between Li and Fj can be derived
using Eqs. (A11) and (A12).

The projected area of aggregate A can be derived
by

S ¼ πD2
m

P
N
i¼1 Mi

NL
; ðB7Þ

where NL is the number of Di in the computation.
The algorithm to compute the projected area can
be verified by replacing aggregate A with a hexago-
nal column whose projected area can be simply deter-
mined by

S ¼ 3
4
a

� ffiffiffi
3

p
aþ 2L

�
; ðB8Þ

where a and L represent the semiwidth and length of
the hexagonal column, respectively. This result is ob-
tained by using the fact that the projected area of a
convex body at random orientation is simply one-
fourth of its surface area. Our results indicate that
the projected area of an aggregate can be accurately
computed for the case NL > 100;000.
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